

Senior Design Project
Musync

High-Level Design Report

Ahmet Çandıroğlu, Anıl Erken, Berk Mandıracıoğlu, Halil İbrahim Azak

Supervisor: Assoc. Prof. Dr. M. Mustafa Özdal
Jury Members: Prof. Dr. Özcan Öztürk, Prof. Dr. Cevdet Aykanat

High-Level Design Report Dec 31, 2018

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the

requirements of the Senior Design Project course CS491.

Table of Content
1. Introduction 3

1.1 Purpose of the System 3
1.2 Design goals 3

1.2.1 Usability 3
1.2.2 Supportability 3
1.2.3 Reliability 4
1.2.4 Efficiency 4
1.2.5 Security 4
1.2.6 Scalability 4
1.2.7 Extensibility 4

1.3 Definitions, acronyms, and abbreviations 4
1.4 Overview 4

2. Proposed software architecture 5
2.1 Overview 5
2.2 Subsystem decomposition 5

2.2.1 Server side 5
2.2.1.1 Model 5
2.2.1.2 Controller 5

2.2.2 Web interface 6
2.2.3 Desktop application 6

2.3 Persistent data Controller 6
2.4 Access control and security 6
2.5 Global software control 7
2.6 Boundary conditions 7

2.6.1 Initialization 7
2.6.2 Termination 8
2.6.3 Failure 8

3. Subsystem services 9
3.1 Client 9

3.1.1 UserInterface Subsystem 9
3.2 Server 11

3.2.1 Controller Subsystem 11
3.2.2 Model Subsystem 12

4. References 14

2

1. Introduction

Music is a common interest that many people enjoy and rest their souls. It may become a

cumbersome procedure to find music that many people enjoy. In our daily lives, we are

surrounded with music by means of our environment such as restaurants, cafes, bars, etc.

Therefore, it is even more important to create a suitable playlist to satisfy majority based on

their collective music taste. It is also necessary to recommend new places that people might

enjoy according to their music taste and even discover new songs.

1.1 Purpose of the System

The main purpose of this system is to let people choose what they listen according to their

music taste in public places such as cafes and bars. Musync aims to facilitate creation of

playlists that are dynamically modified by both analysing the music tastes of users and their

feedback on the current playlist. Musync is basically an automated digital jukebox which

collects data about people’s music tastes from its current users and initialises a playlist. The

playlist is dynamic and changes as people come on go so that everybody can listen what

they generally like. Moreover, users are able to add songs to the playlist and have a chance

to choose the next song by the power of bidding. Also, users are able to see nearby

locations along with their music preferences, so they can choose where they want to hang

out.

1.2 Design goals

1.2.1 Usability

● User interface should be simple and user friendly for both patrons and place owners.

● Users should not have any difficulty to start using the system.

● Users should be able to achieve their goals in a simple, easy and fast manner. There

shouldn’t be unnecessary steps.

3

1.2.2 Supportability

● The system should be able to work on wide range of desktop and mobile browsers.

● The system should be compatible with third party APIs such as Google Map API and

Spotify API.

1.2.3 Reliability

● The system should be able to create joint playlist that will satisfy the majority and

preferences of place owner regardless of the number of concurrent users.

1.2.4 Efficiency

● The delay between a user requesting a song and the song being added to an

appropriate position on the list should not exceed 10 seconds.

● The server response creation time to any request should not exceed 200

milliseconds.

● The joint playlist should be created in a reasonable time and space complexity.

1.2.5 Security

● User related information should be stored securely.

● Authentication and user sessions should be handled in a secure way.

● Sensitive data like user passwords and/or credit card details should not be stored in

plain text and should be encrypted securely.

1.2.6 Scalability

● The service provided to users of separate places should not be affected by the

amount of all users.

● The system should be able to handle multiple requests coming from different sources

simultaneously.

4

1.2.7 Extensibility

● New features and improvements should be able to be made to system anytime

without difficulties and disrupting the service.

1.3 Definitions, acronyms, and abbreviations

API: Application Programming Interface.

MVC: Model View Controller architecture.

1.4 Overview

The aim of Musync is enhancing the enjoyment of music in public areas such as restaurants,

cafes, and bars. Achieving this requires owners of these areas to be able to gather feedback

from theirs patrons constantly and control the playlist with frequent changes. The purpose of

Musync is to automate most of this work and provide an easy to use service to enhance the

music playing in public areas. Musync enhances the playlist by both gathering and analyzing

music taste of patrons using the data from their Spotify accounts, and providing an easy way

to contribute to the playlist by requesting songs and bidding to requested songs.

Musync will also be available for individuals to host their own shared playlist. It will be

available for free for a limited time in a month. The time will be adjusted to allow people use

it freely for their occasional gatherings like birthday parties. In case a user wants to use it

more frequently, they will need to upgrade their account to a premium account public places

will use.

5

2. Proposed software architecture

2.1 Overview

In this section proposed software architecture is presented in detail. Firstly, decomposition of

3 subsystems, which are server side for handling requests, frontend web interface for

patrons and a desktop application for place owners, is shown. Then, persistent data

management and database objects are described. Data control, validation and

synchronization issues are discussed. Finally, initialization, termination and failure boundary

conditions are described.

2.2 Subsystem decomposition

Figure 1: Subsystems overview

2.2.1 Server side

2.2.1.1 Model

Model subsystem will be responsible for storing data and provides relevant functionalities.

The database connection and adding, removing and updating data will be done through

Model subsystem.

6

2.2.1.2 Controller

Controller subsystem will control the main logic and functionalities the server side will

provide. This subsystem will handle requests made to the server and will be a bridge

between user interface and data. The functionalities Controller subsystem will provide

includes creation of joint playlists, adding requested songs to playlists at appropriate

positions and managing the bidding system and order of the songs in playlists. Also the

communication between the system and Spotify API will be done through Controller

subsystem.

2.2.2 Web interface

Web interface subsystem is one of the client side subsystems that users will interact with.

Web interface will provide functionalities for patrons. This subsystem will consist of web

pages users can open from the browser of their devices without the need of any other

programs. The subsystem will communicate with Controller subsystem to provide

functionalities. These functionalities will include logging in to the system, connecting to a

place, making song requests and bidding on songs. In addition to the place specific

functionalities, users will also be able to look for places with specific music genre

preferences and see recently played songs in the places. The Web interface subsystem is

the view side of the system considering the MVC architecture.

2.2.3 Desktop application

Desktop application is the other client side subsystem that will provide functionalities for

place owners. It will consist of a desktop application that needs to be installed to a computer.

Desktop application will provide functionalities to manage places, genre preferences of the

places and other similar customizations. This subsystem will also communicate with the

Controller subsystem on the Server side. This subsystem is also one of the view sides of the

MVC architecture.

2.3 Persistent Data Management

Musync deals with two types of data that must be stored: User specific information and place

specific information. For each user; e-mail address, password, ownership type (free trial

owner/subscribed owner), owned places, points, Spotify account ID, bidding history and

7

place visit history need to be stored in order to provide functionalities like login, contribution

to shared playlist and place recommendation. For each place; name, location, owner,

preferred song genre, 4-digit place specific code, recently played songs, place type

(permanent or not) and connected Spotify account ID will be stored.

In order to store those, we will use a database. Database type to use is not decided yet.

Currently we are thinking about factors such as data access speed to decide between a

relational versus non-relational database type.

2.4 Access Control and Security

In Musync, there are different types of users and they are allowed to view and manipulate

different sets of data. For example, only the owner of a place will be able to change its

credentials like name, preferred genre, location etc. Only registered users will be able to

create a new place. However, any visitor that is connected to a place will be able to bid on

next songs and request songs. Users will not be able to access and change other users’

data.

To increase the security, registration will be made with a unique, verified email address and

there will be strong password requirement. Also, the passwords in the database will be

encrypted.

2.5 Global software control

Musync will work on a web browser and users will not necessarily have an account. For this

reason, storing and manipulating data on client side is not optimal in terms of data validation

and synchronization of the data. Using MVC and client-server architectures eliminates this

problem.

Changes in state which are caused by users, on client side, will be directed to the server for

resolution. Controller subsystem will decide how to respond to the request according to

relevant Model classes and the data which is stored in a database. If database manipulation,

such as updating or deleting existing data, is needed, it will be done before sending

response to the client. Then, response message will be written according to the requesting

party and sent. Client side, which has view components, will show relevant information to the

user according to the received response message from the server. So, the data will be

8

validated and synchronized between users and places on the server side, and client side will

only show the data provided by the server to the user.

2.6 Boundary conditions

2.6.1 Initialization

The application will require the server side to be active and running. The initialization of the

server side will be done by us and only once at the very start of the service. The initialization

of the server side requires setting up databases and customization of server configurations.

Patrons will need a device with an internet connection to access the web interface. To

connect a place, they will also need the code provided by the place.

Place owners will need to login to the system to be able create and manage places. They

will also need to connect their Spotify account. A computer connected to internet is also

required to be able to use desktop application.

2.6.2 Termination

User authentication will be tracked through sessions. Sessions can end either through user

logging out or the session getting timed out. If user does not log out herself, her session will

get timed out after a fixed time. This time is reset every time user connects to the server

through same session.

2.6.3 Failure

Internet connection loss on the user side prevents user from using the application but users

will be able to reconnect and continue using until their session expires. The server side will

not fail to continue providing its service to other users when a user fails to connect and use

application.

Failure on the Spotify API connection will cause the service provided to a specific place to

stop. This failure might be caused by user being unable to correctly connect their Spotify

account or it might be a failure on the Spotify API side.

9

3. Subsystem services

This section describes the subsystems of Musync and the services they provide.

3.1 Client

The client corresponds to the user related functionalities of our system. It comprises Model,

UserInterface subsystem.

3.1.1 UserInterface Subsystem

UserInterface Subsystem is responsible for providing user interface for Musync system.

It consists of five major components:

● MainView

● MapView

10

● AccountView

● PlaceView

● PlaylistView

When the user first connects to the Musync the MainView Component in which user can

login or subscribe to our system and then interact with the system. MainView Component s

the presentation level for user which they can perform main functionalities such as view

settings, places, check-in to place and add/bid songs to the playlist. Moreover, if the user is

a place owner they can create playlists and manage their accounts.

AccountView Component provides interface for user to change their user preferences such

as their public playlists, shared songs, added songs, public profile, etc. Moreover, if the user

is a place owner they can manage music preferences(list of genres and artists) of their place

through this interface.

MapView Component provides interface for user to view and discover new places on map.

Moreover, it enables users to view the type of music that are played around their location.

PlaceView Component provides interface for user to check-in to the place and validate their

location. Then, they can see the playlist of the place and add songs to playlist. Users can bid

through this interface in order to get their requested songs to be played next. Moreover, if

the users are place owners they can limit the genres to be played in the playlist.

PlaylistView Component provides interface for users to search new songs and possibly add

them to the playlist. They can discover new songs through this interface and add that song

to their own playlists. If the user is a place owner, they can initiate an automatic playlist

creation through the system. Place owners can also set limits to playlists both in terms of

genres and number of songs per each genre.

3.2 Server

Server is an intrinsic part of our system. The server receives the requests from clients and

reflects it to the system, thus it handles client-system communication. Server is responsible

for consistent Controller of data. It comprises two subsystems Controller and Model.

11

3.2.1 Controller Subsystem

Controller Subsystem is responsible for controlling and handling the data and overall

system.It consists of following six components:

● SystemController

● SpotifyController

● PlaceController

● UserController

● MapController

● DatabaseController

DatabaseController is responsible for controlling the data consistency throughout the

system. Moreover, it keeps statistically data about user activity, playlists and genres for all

places. It is an essential part of the system to be usable.

MapController is responsible for handling the location consistency and validation of the

users location. Moreover, it binds the coordinates of places on the map and renders them

viewable to user. It keeps track of the users location in order to avoid possible system

exploitation and abuse.

12

PlaceController is responsible for validating the visitors of the place by providing distinct

user codes as well as checking whether their location is authentic.

SpotifyController is responsible for handling user requests and communication of Spotify

API with the service. It is the most essential part of the system since playing, adding songs

and creation of the playlists are performed over this system. Moreover, it collects visitors

music activity in order to create the optimal playlist that is preferable by every user.

UserController is responsible for handling user activity and requests. This system is crucial

for usability of the system. Users are able to perform user-related activities such as through

this system.

SystemController is responsible for the consistency among all other components inside the

Controller subsystem. Basically, it handles all the system logic to deploy and maintain the

system.

13

3.2.2 Model Subsystem

Model Subsystem is represents our models. It consists of User, Place, Playlist Maps and

Spotify components. It handles user, place and playlist updates and concurrency.

Spotify Component, enables the playlist updates, online searching, bidding and reflects it

to the UserInterface subsystem. Basically, it is the dynamic data update of the music related

activities coming from the Controller subsystem.

Maps Component, enables to keep track of user GPS location and updates. Therefore, it

enables system to detect whether users have left the place or entered. Moreover, it handles

dynamic changes in the Map view in UserInteerface subsystem. These dynamic changes

may include new genres introduced to the place or new trending song emerges in the place

to be reflected on the map.

14

Playlist Component, enables the dynamic update of user and place playlists through

interacting with Spotify component and Controller subsystem. Basically, it handles and

maintenance of playlist topicality.

Place Component, provides the Controller of place settings such as genres and playlist

generation. Through communication with User and Playlist components, Place component

provides functions like place creation/joining to a place and sets the playlist of the place.

15

4. References

Object-Oriented Software Engineering, Using UML, Patterns, and Java, 2nd Edition, by
Bernd Bruegge and Allen H. Dutoit, Prentice-Hall, 2004, ISBN: 0-13-047110-0.

16

